
title: Title

Python Threads
Aahz

aahz@pobox.com
http://starship.python.net/crew/aahz/

Powered by PythonPoint
http://www.reportlab.com/

title:

title: Meta Tutorial

Meta Tutorial
• I'm hearing-impaired

Please write questions if at all possible

• Pop Quiz

• Slides and scripts on web

title: Contents

Contents
• Goal: Use Threads!

• Thread Overview

• Python's Thread Library

• Two Applications
Web Spider
GUI Background Thread

• Tips and tricks

title: Part 1

Part 1: Thread Intro
• What are threads?

• GIL

• Python threads

• Brute force threads

title: Generic Threads

Generic Threads
• Similar to processes

• Shared memory

• Light-weight

• Difficult to set up
Especially cross-platform

title: Why Use Threads?

Why Use Threads?
• Efficiency/speed

multiple CPUs, parallelize blocking I/O

• Responsiveness
e.g. background thread for GUI

• Algorithmic simplicity
simulations, data passing
(mostly skipped in this tutorial)

title: Python Threads

Python Threads
• Class-based

Use threading, not thread

• Cross-platform, OS-level

• Thread Library

title: Python 1.5.2

Python 1.5.2
• configure --with-thread

Except on MS Windows and some Linux
distributions

• Multi-CPU bug
Creating/destroying large numbers of
threads

• Upgrade to 2.x

title: GIL

GIL
• Global Interpreter Lock (GIL)

• Full Documentation:
 www.python.org/doc/current/api/threads.html

• Only one Python thread can run
Even with multiple CPUs

• GIL is your friend (really!)

title: GIL in action

GIL in Action
• Which is faster?
One Thread
total = 1
for i in range(10000):
 total += 1
total = 1
for i in range(10000):
 total += 1

Two Threads
total = 1 total = 1
for i in range(10000): for i in range(10000):
 total += 1 total += 1

title: Dealing with GIL

Dealing with GIL
• sys.setcheckinterval()

(default 10)

• C extensions can release GIL

• Blocking I/O releases GIL
So does time.sleep(!=0)

• Multiple Processes
CORBA, XML-RPC, sockets, etc.

title: Share External Objects 1

Share External Objects
• Files, GUI, DB connections

title: Share External Objects 2

Share External Objects
• Files, GUI, DB connections

Don't

title: Share External Objects 3

Share External Objects
• Files, GUI, DB connections

Don't
• Partial exception: print

• Still need to share?
Use worker thread

title: Create Python Threads

Create Python Threads
• Subclass threading.Thread

• Override __init__() and run()

• Do not override start()

• In __init__(), call
Thread.__init__()

title: Use Python Threads

Use Python Threads
• Instantiate thread object

t = MyThread()

• Start the thread
t.start()

• Methods/attribs from outside thread
t.put('foo')
if t.done:

title: Non-threaded Example

Non-threaded Example
class Retriever:
 def __init__(self, URL):
 self.URL = URL
 def run(self):
 self.page = self.getPage()

retriever = Retriever('http://www.foo.com/')
retriever.run()
URLs = retriever.getLinks()

title: Threaded Example

Threaded Example
from threading import Thread

class Retriever(Thread):
 def __init__(self, URL):
 Thread.__init__(self)
 self.URL = URL
 def run(self):
 self.page = self.getPage()

retriever = Retriever('http://www.foo.com/')
retriever.start()
while retriever.isAlive():
 time.sleep(1)
URLs = retriever.getLinks()

title: Multiple Threads

Multiple Threads
seeds = ['http://www.foo.com/',
 'http://www.bar.com/',
 'http://www.baz.com/']
threadList = []
URLs = []

for seed in Seed:
 retriever = Retriever(seed)
 retriever.start()
 threadList.append(retriever)

for retriever in threadList:
 # join() is more efficient than sleep()
 retriever.join()
 URLs += retriever.getLinks()

title: Thread Methods

Thread Methods
• Module functions:

activeCount() (not useful)
enumerate() (not useful)

• Thread object methods:
start()
join() (somewhat useful)
isAlive() (not useful)
isDaemon()
setDaemon()

title: Unthreaded Spider

Unthreaded Spider
• SingleThreadSpider.py

• Compare Tools/webchecker/

title: Brute Force Threads

Brute Force Threads
• Quick-convert to multiple threads

• Need worker class
Just inherit from threading.Thread

• One instance per work unit

title: Brute Thread Spider

Brute Thread Spider
• BruteThreadSpider.py

• Few changes from
SingleThreadSpider.py

• Spawn one thread per retrieval

• Inefficient polling in main loop

title: Recap Part 1

Recap Part 1
• GIL

• Creating threads

• Brute force threads

title: Part 2

Part 2
• Thread Theory

• Python Thread Library

title: Thread Order

Thread Order
• Non-determinate
 Thread 1 Thread 2
print "a,", print "1,",
print "b,", print "2,",
print "c,", print "3,",

• Sample output
 1, a, b, 2, c, 3,
 a, b, c, 1, 2, 3,
 1, 2, 3, a, b, c,
 a, b, 1, 2, 3, c,

title: Thread Communication

Thread Communication
• Data protection

• Synchronization

title: Data Protection

Data Protection
• Keeps shared memory safe

• Restricted code access
Only one thread accesses block of code

• "critical section lock"
aka "mutex", "atomic operation"

• Similar to DBMS locking

title: Synchronization

Synchronization
• Synchronize action between threads

• Passing data
Threads wait for each other to finish tasks

• More efficient than polling
aka "wait/notify", "rendezvous"

title: Thread Library

Thread Library
• Lock()

• RLock()

• Semaphore()

• Condition()

• Event()

• Queue.Queue()

title: Lock()

Lock()
• Basic building block

Handles either protection or
synchronization

• Methods
acquire(blocking)
release()

title: Critical Section Lock

Critical Section Lock
 Thread 1 Thread 2
mutex.acquire() ...
if myList: ...
 work = myList.pop() ...
mutex.release() ...
... mutex.acquire()
... if len(myList)<10:
... myList.append(work)
... mutex.release()

title: Misusing Lock()

Misusing Lock()
• Lock() steps on itself
mutex = Lock()
mutex.acquire()
 ...
mutex.acquire() # OOPS!

title: Synching threads

Synch Two Threads
class Synchronize:
 def __init__(self):
 self.lock = Lock()
 def wait(self):
 self.lock.acquire()
 self.lock.acquire()
 self.lock.release()
 def notify(self):
 self.lock.release()

 Thread 1 Thread 2
self.synch.wait() ...
... self.synch.notify()
... self.synch.wait()
self.synch.notify() ...

title: RLock()

RLock()
• Mutex only

Other threads cannot release RLock()

• Recursive

• Methods
acquire(blocking)
release()

title: Using RLock()

Using RLock()
mutex = RLock()
mutex.acquire()
 ...
mutex.acquire() # Safe
 ...
mutex.release()
mutex.release()

 Thread 1 Thread 2
mutex.acquire() ...
self.update() ...
mutex.release() ...
... mutex.acquire()
... self.update()
... mutex.release()

title: Semaphore()

Semaphore()
• Restricts number of running threads

In Python, primarily useful for simulations
(but consider using microthreads)

• Methods
Semaphore(value)
acquire(blocking)
release()

title: Condition()

Condition()
• Methods

Condition(lock)
acquire(blocking)
release()
wait(timeout)
notify()
notifyAll()

title: Using Condition()

Using Condition()
• Must use lock
cond = Condition()
cond.acquire()
cond.wait() # or notify()/notifyAll()
cond.release()

• Avoid timeout
Creates polling loop, so inefficient

title: Event()

Event()
• Thin wrapper for Condition()

Don't have to mess with lock
Only uses notifyAll(), so can be
inefficient

• Methods
set()
clear()
isSet()
wait(timeout)

title: TMTOWTDI

TMTOWTDI
• Perl:

There's More Than One Way To Do It

• Python:
There should be one - and preferably only
one - obvious way to do it

• Threads more like Perl

title: Producer/Consumer

Producer/Consumer
• Example: factory

One part of the factory produces part of a
widget; another part of the factory
consumes widget parts to make complete
widgets. Trick is to keep it all in balance.

title:

title: Factory 1

Body factory Wheel factory

Assembly

title: Factory Objects 1

Factory Objects 1
Body Wheels
body.list wheels.list
body.rlock wheels.rlock
body.event wheels.event
assembly.event assembly.event

Assembly
body.list
body.rlock
body.event
wheels.list
wheels.rlock
wheels.event
assembly.rlock
assembly.event

title: Queue()

Queue()
• Built on top of thread

Use with both threading and
thread

• Designed for subclassing
Can implement stack, priority queue, etc.

• Simple!
Handles both data protection and
synchronization

title: Queue() Objects

Queue() Objects
• Methods

Queue(maxsize)
put(item,block)
get(block)
qsize()
empty()
full()

• Raises exception non-blocking

title: Using Queue()

Using Queue()
Thread 1 Thread 2
out = self.doWork() ...
queue2.put(output) ...
... self.in = queue2.get()
... out = self.doWork()
... queue1.put(output)
self.in = queue1.get() ...

title: Factory 2

Body factory Wheel factory

Assembly

title: Factory Objects 2

Factory Objects 2
Body Wheels
body.queue wheels.queue

Assembly
body.queue
wheels.queue
assembly.rlock

title: Factory 3

Body factory Wheel factory

Packager

Assembly

title: Factory Objects 3

Factory Objects 3
Body Wheels
body.queue wheels.queue

Packager
while 1:
 body = self.body.queue.get()
 wheels = self.wheels.queue.get()
 self.assembly.queue.put((body,wheels))

Assembly
assembly.queue

title: Recap Part 2

Recap Part 2
• Data protection and synchronization

• Python Thread Library

• Queues are good

title: Part 3

Part 3: Two Apps
• Using Queues

spider (thread pool)
GUI (Tkinter) (background thread)

title: Spider w/Queue

Spider w/Queue
• ThreadPoolSpider.py

• Two queues
Pass work to thread pool
Get links back from thread pool

• Queue for both data and events

title: Tkinter Intro

Tkinter Intro

This space intentionally left blank

title: GUI building blocks

GUI building blocks
• Widgets

Windows, buttons, checkboxes, text entry,
listboxes

• Events
Widget activation, keypress, mouse
movement, mouse click, timers

title: Widgets

Widgets
• Geometry manager

• Register callbacks

title: Events

Events
• Event loop

• Trigger callbacks

title: Tkinter resources

Tkinter resources
• Web

 www.python.org/topics/tkinter/doc.html

• Books
Python and Tkinter Programming, John E.
Grayson

title: Fibonacci

Fibonacci
• Fibonacci.py

• UI freezes during calc

• Frequent screen updates slow calc

title: Threaded Fibonacci

Threaded Fibonacci
• FibThreaded.py

• Tkinter needs to poll
Use after event

• Single-element queue
Use in non-blocking mode to minimize
updates

• Must use "Quit" button

title: FibThreaded Bugs and Exercises

FibThreaded Bugs and
Exercises

• Fix deadlock on quit

• Fix display of illegal values

• Refactor for generic calc object

title: Compare Spider/Fib

Compare Spider/Fib
• Shared structures vs. callbacks

title: Recap Part 3

Recap Part 3

title: Part 4

Part 4: Miscellaneous
• Grab bag of useful info

title: GIL and Shared Vars

GIL and Shared Vars
• Safe: one bytecode

Single operations against Python basic
types (e.g. appending to a list)

• Unsafe
Multiple operations against Python
variables (e.g. checking the length of a list
before appending) or any operation that
involves a callback to a class (e.g. the
__getattr__ hook)

title: Locks vs GIL

Locks vs GIL
• Each lock is unique, a real OS-level

lock; GIL is separate

title: GIL example

GIL example
• Mutex only reading threads
 Threads 1,4 Threads 2,3,5
myList.append(work) mutex.acquire()
... if myList:
... work = myList.pop()
... mutex.release()

• Not safe with UserList

title: dis this

dis this
• disassemble source to byte codes

• Thread-unsafe statement
If a single Python statement uses the same
shared variable across multiple byte codes,
or if there are multiple mutually-dependent
shared variables, that statement is not
thread-safe

title: Performance Tip

Performance Tip
• python -O

Also set PYTHONOPTIMIZE
15% performance boost
Removes bytecodes (SET_LINENO)
Fewer context switches!

Also removes assert

title: import Editorial

import Editorial
• How to import
 from threading import Thread, Semaphore

or
 import threading

• Don't use
 from threading import *

title: GIL and C Extensions

GIL and C Extensions
• Look for macros:

Py_BEGIN_ALLOW_THREADS
Py_END_ALLOW_THREADS

• Some common extensions:
mxODBC - yes
NumPy - no

• I/O exception: library problems
e.g. socket.gethostbyname()

title: Stackless/Microthreads

Stackless/Microthreads
• Not OS-level threads

• Mix: cooperative and preemptive

• Useful for thousands of threads
e.g. simulations

• More info:
 http://www.tismer.com/research/stackless/
 http://world.std.com/~wware/uthread.html

title: Killing Threads

Killing Threads

title: Debugging Threads

Debugging Threads
• gdb

title: Thread Scheduling

Thread Scheduling
• always on same cpu?

• specify CPU?

title: Handling Exceptions

Handling Exceptions
• try/finally

Use to make sure locks get released

• try/except
Close down all threads in outer block
Be careful to pass SystemExit and
KeyboardInterrupt

title: try/finally

try/finally

title: try/except

try/except

title: Pop Quiz 1

Pop Quiz 1
 How are threads and processes similar and different?

 What is the GIL?

 In what ways does the GIL make thread programming
 easier and harder?

 How do you create a thread in Python?

 What should not be shared between threads?

title: Pop Quiz 2

Pop Quiz 2
 What are "brute force" threads?

 Explain what each of the following is used for:
 Lock()
 RLock()
 Semaphore()
 Condition()
 Event()
 Queue.Queue()

 Why are queues great?

title: Pop Quiz 3

Pop Quiz 3
 How do you handle exceptions?

	Title
	Meta Tutorial
	Contents
	Part 1
	Generic Threads
	Why Use Threads?
	Python Threads
	Python 1.5.2
	GIL
	GIL in action
	Dealing with GIL
	Share External Objects 1
	Share External Objects 2
	Share External Objects 3
	Create Python Threads
	Use Python Threads
	Non-threaded Example
	Threaded Example
	Multiple Threads
	Thread Methods
	Unthreaded Spider
	Brute Force Threads
	Brute Thread Spider
	Recap Part 1
	Part 2
	Thread Order
	Thread Communication
	Data Protection
	Synchronization
	Thread Library
	Lock()
	Critical Section Lock
	Misusing Lock()
	Synching threads
	RLock()
	Using RLock()
	Semaphore()
	Condition()
	Using Condition()
	Event()
	TMTOWTDI
	Producer/Consumer
	Factory 1
	Factory Objects 1
	Queue()
	Queue() Objects
	Using Queue()
	Factory 2
	Factory Objects 2
	Factory 3
	Factory Objects 3
	Recap Part 2
	Part 3
	Spider w/Queue
	Tkinter Intro
	GUI building blocks
	Widgets
	Events
	Tkinter resources

	Fibonacci
	Threaded Fibonacci
	FibThreaded Bugs and Exercises
	Compare Spider/Fib
	Recap Part 3
	Part 4
	GIL and Shared Vars
	Locks vs GIL
	GIL example
	dis this
	Performance Tip
	import Editorial
	GIL and C Extensions
	Stackless/Microthreads
	Killing Threads
	Debugging Threads
	Thread Scheduling
	Handling Exceptions
	try/finally
	try/except
	Pop Quiz 1
	Pop Quiz 2
	Pop Quiz 3

