Python Threads

Aahz

aahz@obox. com
http://starship. python. net/crew aahz/

Powered by PythonPoint
http://ww.reportl ab. com

title: Title

title:

Meta Tutorial

I'm hearing-impaired
Please write questions if at all possible

. Pop Quiz
. Slides and scripts on web

Contents

. Goal: Use Threadds!
. Thread Overview

Python's Thread Library

. Two Applications

Web Spider
GUI Background Thread

. Tipsandtricks

Part 1: Thread Intro

. What are threads?
. GIL

. Python threads
. Brute force threads

Generic Threads

. Similar to processes
. Shared memory

Light-weight

Difficult to set up
Especially cross-platform

Why Use Threads?

. Efficiency/speed
multiple CPUs, parallelize blocking I/0O

. Responsiveness
e.g. background thread for GUI

. Algorithmic ssimplicity
simulations, data passing
(mostly skipped in this tutorial)

Python Threads

. Class-based

Uset hr eadi ng, nott hr ead

. Cross-platform, OS-level
. Thread Library

Python 1.5.2

. configure --wth-thread

Except on MS Windows and some Linux
distributions

. Multi-CPU bug

Creating/destroying large numbers of
threads

. Upgradeto 2.x

GIL

Global Interpreter Lock (GIL)

Full Documentation:
www. pyt hon. or g/ doc/ current/ api/t hreads. ht m

Only one Python thread can run
Even with multiple CPUs

GIL isyour friend (really!)

GIL 1n Action

Which is faster?

One Thread

total =1
for 1 1n range(10000):

total += 1

total =1
for 1 1 n range(10000):

total += 1

Two Threads

total =1
for 1 1 n range(10000):

total += 1

total =1
for 1 1n range(10000):

total += 1

title: GIL in action

Dealing with GIL

. Sys. set checkl nterval ()

(default 10)

. C extensions can release GIL

Blocking 1/O releases GIL
Sodoest | ne. sl eep(! =0)

Multiple Processes
CORBA, XML-RPC, sockets, etc.

title: Dealing with GIL

Share External Objects

. Files, GUI, DB connections

Share External Objects

. Files, GUI, DB connections

Dont

Share External Objects

. Files, GUI, DB connections

Dont

. Partial exception: pri nt

. Still need to share?
Use worker thread

title: Share External Objects 3

Create Python Threads

. Subclasst hr eadi ng. Thr ead

- Overide 1nit () andrun()
- Donot overridest art ()

. In__init__(),cal
Thread. init ()

Use Python Threads

|nstantiate thread object
t = MyThread()

. Start the thread

t.start ()

. Methodd/attribs from outside thread

t.put('foo')
| f t.done:

Non-threaded Example

cl ass Retriever:
def __init_ (self, URL):
self.URL = URL
def run(self):
sel f. page = sel f. get Page()

retriever = Retriever('http://ww.foo.com"')

retriever.run()
URLs = retriever. getLinks()

title: Non-threaded Example

Threaded Example

fromthreading I nport Thread

cl ass Retriever(Thread):
def _1nit_ (self, URL):
Thread. 1nit_ (self)
self.URL = URL
def run(self):
sel f. page = sel f. getPage()

retriever = Retriever('http://ww.foo.conm')
retriever.start ()
while retriever.isAlive():
tine.sleep(l)
URLs = retriever. getLinks()

title: Threaded Example

Multiple Threads

seeds = ["http://ww.foo.com"’,
http /IMMM/bar.coni',
http [[www. baz. conm ']

threadList = []

URLs = []

for seed I n Seed:
retriever = Retriever(seed)
retriever.start ()
t hreadLi st. append(retriever)

for retriever in threadList:
join() 1s nore efficient than sl eep()
retriever.join()
URLs += retriever. getLinks()

title: Multiple Threads

Thread Methods

. Module functions:

act1 veCount () (not useful)
enuner at e() (not useful)

. Thread object methods:

start ()

] ol n() (somewhat useful)
| SAl 1 ve() (not useful)

| sDaenon()

set Daenon()

Unthreaded Spider

. SI ngl eThr eadSpi der . py
. Compare Tool s/ webchecker/

Brute Force Threads

Quick-convert to multiple threads

Need worker class
Just inherit fromt hr eadi ng. Thr ead

One Instance per work unit

Brute Thread Spider

. Brut eThreadSpi der. py
. Few changes from

SI ngl eThr eadSpi der . py

- Spawn one thread per retrieval

Inefficient polling In main loop

le: Brute Thread Spider

Recap Part 1

. GIL
. Creating threads
. Bruteforce threads

Part 2

. Thread Theory
. Python Thread Library

Thread Order

. Non-determinate

Thread 1 Thread 2
print "a,", print "1,",
print "b,", print "2,",
print "c,", print "3,",

. Sample output
1, a, b, 2, c, 3,
a b, c, 1, 2, 3,
1, 2, 3, a, b, c,
a, b, 1, 2, 3, c,

title: Thread Order

Thread Communication

. Data protection
. Synchronization

Data Protection

Keeps shared memory safe

Restricted code access
Only one thread accesses block of code

"critical section lock”
aka "mutex", "atomic operation”

Similar to DBM S locking

Synchronization

Synchronize action between threads

Passing data
Threads wait for each other to finish tasks

More efficient than polling
aka "wait/notify", "rendezvous’

Thread Library

. Lock()

- RLock()

. Semaphore()
. Condition()
- Event ()

- Queue. Queue()

ead Library

| ock()

. Basic building block

Handles either protection or
synchronization

. Methods

acqul r e(bl ocki ng)
rel ease()

title: Lock()

Critical Section L ock

Thread 1 Thread 2

mut ex. acqui re()
| f myLi st: .
wor k = myLi st. pop() ...
mut ex. rel ease() -
mut ex. acqui re()
1 f | en(nmyLi st) <10:
nmyLi st. append(wor k)
mut ex. rel ease()

title: Critical Section Lock

Misusing L ock()
Lock() stepson itself

mut ex = Lock()
mut ex. acqui re()

nuiék.acquire() # OOPS!

isusing Lock()

Synch Two Threads

cl ass Synchroni ze:

def __init__ (self):
self.lock = Lock()

def walt(self):
sel f.l ock.acquire()
sel f. 1 ock. acquire()
sel f.l ock. rel ease()

def notify(self):

sel f. | ock.rel ease()

Thread 1 Thread 2

sel f.synch. wait ()

sel f . synch. noti fy()
. sel f.synch. wait ()
sel f.synch. notify()

title: Synching threads

RL ock ()

. Mutex only
Other threads cannot rel ease RL ock()

. Recursive
. Methods

acqul r e(bl ocki ng)
rel ease()

le: RLock()

Using RL ock()

mut ex = RLock()
mut ex. acqui re()

mut ex. acqui re()

mut ex. rel ease()
mut ex. rel ease()

Thread 1

mut ex. acqui re()
sel f. updat e()
mut ex. r el ease()

Saf e

Thread 2

hﬁiex.acquire()
sel f. update()
mut ex. rel ease()

title: Using RLock()

Semaphor ()

. Restricts number of running threads

In Python, primarily useful for ssimulations
(but consider using microthreads)

. Methods

Semaphor e(val ue)
acqul re(bl ocki ng)
rel ease()

title: Semaphore()

Condition()

. Methods

Condi ti on(l ock)
acqul r e(bl ocki ng)
rel ease()

wal t (t1 nmeout)
notify()

noti fyAl | ()

tle: Condition()

Using Condition()

. Must use lock

cond = Condition()
cond. acqui re()

cond. wai t () # or notify()/notifyAll ()
cond. rel ease()

. Avoidt I neout
Creates polling loop, so inefficient

title: Using Condition()

Event()

. Thinwrapper for Condi t1 on()

Don't have to mess with lock
Only usesnot i fyAl | (), socan be
Inefficient
Methods
set ()
cl ear ()

| sSet ()
wal t (t1 nmeout)

title: Event()

TMTOWTDI

. Perl:
There's More Than One Way To Do It

. Python:

There should be one - and preferably only
one - obvious way to do It

. Threads more like Per]

Producer/Consumer

. Example: factory

One part of the factory produces part of a
widget; another part of the factory

consumes widget parts to make complete
widgets. Trick isto keep it al in balance.

title: Producer/Consumer

title:

Body factory Whed factory

Assembly

title: Factory 1

Factory Objects 1

Body

body. | I st
body. rl ock
body. event
assenbl y. event

Assembly

body. | i st
body. rl ock
body. event
wheel s. | | st
wheel s. rl ock
wheel s. event
assenbl y. rl ock
assenbl y. event

Whesdls

wheel s. | I st
wheel s. rl ock
wheel s. event
assenbl y. event

title: Factory Objects 1

Queue()

. Bulltontopof t hr ead

Use with botht hr eadi ng and
t hr ead

. Designed for subclassing
Can implement stack, priority queue, etc.

. Simplel
Handles both data protection and
synchronization

title: Queue()

Queue() Objects

. Methods

Queue(naxsi ze)
put (1tem bl ock)
get (bl ock)

gsi ze()

empt y()
full ()

. Raises exception non-blocking

Using Queug()

Thread 1 Thread 2

out = self.doWrk()
gueue?2. put (out put) -
. self.in = queue2. get ()
out = self.doWrk()
- gqueuel. put (out put)

self.in = gqueuel. get ()

title: Using Queue()

Body factory Whed factory

Assembly

title: Factory 2

Factory Objects 2

Body Wheels
body. queue wheel s. queue
Assembly

body. queue

wheel s. queue
assenbl y. rl ock

Body factory Whed factory

\ Packager

Assembly

title: Factory 3

Factory Objects 3

Body Wheels
body. queue wheel s. queue
Packager

while 1:

body = sel f. body. queue. get ()
wheel s = sel f. wheel s. queue. get ()
sel f.assenbl y. queue. put ((body, wheel s))

Assembly

assenbl y. queue

title: Factory Objects 3

Recap Part 2

. Data protection and synchronization
. Python Thread Library
. Queues are good

Part 3. Two Apps

- Using Queues

spider (thread pool)
GUI (Tkinter) (background thread)

Spider w/Queue

. Thr eadPool Spi der . py
- TwO queues

Pass work to thread pool
Get links back from thread pool

Queue for both data and events

Tkinter Intro

This space intentionally left blank

GUI building blocks

.- Widgets
Windows, buttons, checkboxes, text entry,
listboxes

. Events
Widget activation, keypress, mouse
movement, mouse click, timers

title: GUI building blocks

Widgets

. Geometry manager
. Register callbacks

Events

. Event loop
. Trigger callbacks

TKinter resour ces
. Web

wWww. pyt hon. org/topics/tkinter/doc. htm

. Books

Python and Tkinter Programming, John E.
Grayson

title: Tkinter resources

F1bonacci

. FI bonacci . py
. Ul freezes during calc
. Frequent screen updates slow calc

Threaded Fibonacci
FI bThr eaded. py

. Tkinter needs to poll

Useaft er event

Single-element queue

Use in non-blocking mode to minimize
updates

Must use "Quit" button

title: Threaded Fibonacci

FIbThreaded Bugs and
EXxercises

. Fix deadlock on quit
. Fix digplay of illegal values
. Retactor for generic calc object

Compare Spider/FIb

. Shared structures vs. callbacks

Recap Part 3

Part 4: Miscallaneous
. Grab bag of useful info

GIL and Shared Vars

. Safe: one bytecode
Single operations against Python basic
types (e.g. appending to alist)

. Unsafe

Multiple operations against Python
variables (e.g. checking the length of alist
before appending) or any operation that
Involves a callback to aclass (e.g. the
__getattr__ hook)

title: GIL and Shared Vars

L. ocksvs GI L

. Eachlock isunique, areal OS-level

lock; GIL Is separate

GIL example
. Mutex only reading threads

Threads 1,4 Threads 2,3,5
nyLi st. append(wor k) mut ex. acqui re()
. | f myLi st

wor k = nyLi st. pop()
mut ex. rel ease()

. Not safe with UserList

title: GIL example

di s this
. dI sassemble source to byte codes

. Thread-unsafe statement

If asingle Python statement uses the same
shared variable across multiple byte codes,
or If there are multiple mutually-dependent
shared variables, that statement is not
thread-safe

Performance Tip

. pyt hon -0O
Also set PYTHONOPTI M ZE
15% performance boost
Removes bytecodes (SET LI NENO)
Fewer context switches!

Also removes assert

title: Performance Tip

| mport Editorial

.- How to import

fromthreading i nport Thread, Senaphore

or
| nport threadi ng

. Don't use

fromthreading I nport *

title: import Editorial

GIL and C Extensions

. Look for macros:
Py BEG N ALLOW THREADS
Py END ALLOW THREADS

. Some common extensions:
mxODBC - yes
NumPy - no

. |/O exception: library problems
e.g. socket . get host bynane()

title: GIL and C Extensions

Stackless/Microthreads

Not OS-level threads
Mix: cooperative and preemptive
Useful for thousands of threads

e.g. ssmulations

More Info:

http://ww. tisnmer.conlresearch/stackl ess/
http://world.std. coni ~wwar e/ ut hr ead. ht nl

Killing Threads

Debugging T hreads

. gdb

Thread Scheduling

. aways on same cpu?
. Specify CPU?

title: Thread Scheduling

Handling Exceptions

- try/finally
Use to make sure locks get released

. trylexcept
Close down all threads in outer block

Be careful to pass Syst entxi t and
Keyboar dl nt er r upt

title: Handling Exceptions

try/finally

try/except

Pop Quiz 1
How are threads and processes similar and different?

What 1sthe GIL?

In what ways does the GIL make thread programming
easler and harder?

How do you create athread in Python?

What should not be shared between threads?

title: Pop Quiz 1

Pop Quiz 2
What are "brute force" threads?

Explain what each of the following Is used for:
_ock()

RLock()

Semaphore()

Condition()

Event()

Queue.Queug()

Why are queues great?

title: Pop Quiz 2

Pop Quiz 3

How do you handle exceptions?

title: Pop Quiz 3

	Title
	Meta Tutorial
	Contents
	Part 1
	Generic Threads
	Why Use Threads?
	Python Threads
	Python 1.5.2
	GIL
	GIL in action
	Dealing with GIL
	Share External Objects 1
	Share External Objects 2
	Share External Objects 3
	Create Python Threads
	Use Python Threads
	Non-threaded Example
	Threaded Example
	Multiple Threads
	Thread Methods
	Unthreaded Spider
	Brute Force Threads
	Brute Thread Spider
	Recap Part 1
	Part 2
	Thread Order
	Thread Communication
	Data Protection
	Synchronization
	Thread Library
	Lock()
	Critical Section Lock
	Misusing Lock()
	Synching threads
	RLock()
	Using RLock()
	Semaphore()
	Condition()
	Using Condition()
	Event()
	TMTOWTDI
	Producer/Consumer
	Factory 1
	Factory Objects 1
	Queue()
	Queue() Objects
	Using Queue()
	Factory 2
	Factory Objects 2
	Factory 3
	Factory Objects 3
	Recap Part 2
	Part 3
	Spider w/Queue
	Tkinter Intro
	GUI building blocks
	Widgets
	Events
	Tkinter resources

	Fibonacci
	Threaded Fibonacci
	FibThreaded Bugs and Exercises
	Compare Spider/Fib
	Recap Part 3
	Part 4
	GIL and Shared Vars
	Locks vs GIL
	GIL example
	dis this
	Performance Tip
	import Editorial
	GIL and C Extensions
	Stackless/Microthreads
	Killing Threads
	Debugging Threads
	Thread Scheduling
	Handling Exceptions
	try/finally
	try/except
	Pop Quiz 1
	Pop Quiz 2
	Pop Quiz 3

